JBTST III 2007, Problema 1
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata, Virgil Nicula
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
JBTST III 2007, Problema 1
Fie ABC un triunghi si punctele M,N,P pe laturile AB,BC,CA respectiv, astfel incat CPMN sa fie paralelogram. Dreptele AN si MP se intersecteaza in punctul R, dreptele BP si MN se intersecteaza in punctul S, iar Q este punctul de intersectie al dreptelor AN si BP. Sa se arate ca S[MRQS]=S[NQP].
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Aplicand teorema lui Thales obtinem:
\( \left\|\begin{array}{ccc} \frac{AR}{RN}&=&\frac{AM}{MB}\\\\\\\\\\
\frac{MS}{SN}&=&\frac{SP}{SB}&=&\frac{NC}{NB}\\\\\\\\\\
\frac{AM}{MB}&=&\frac{NC}{NB}\end{array}\right| \ \Longrightarrow\ \frac{AR}{RN}\ =\ \frac{MS}{SN}\ \Longrightarrow^{\mbox{R.T.Th}}\ RS\ \parallel\ AB. \)
Atunci in trapezele \( RPNB \) si \( RSBM \) avem relatiile \( S_{PQN}\ =\ S_{RQB} \) si \( S_{RSB}\ =\ S_{RSM} \), ceea ce conduce la concluzia problemei.
\( \left\|\begin{array}{ccc} \frac{AR}{RN}&=&\frac{AM}{MB}\\\\\\\\\\
\frac{MS}{SN}&=&\frac{SP}{SB}&=&\frac{NC}{NB}\\\\\\\\\\
\frac{AM}{MB}&=&\frac{NC}{NB}\end{array}\right| \ \Longrightarrow\ \frac{AR}{RN}\ =\ \frac{MS}{SN}\ \Longrightarrow^{\mbox{R.T.Th}}\ RS\ \parallel\ AB. \)
Atunci in trapezele \( RPNB \) si \( RSBM \) avem relatiile \( S_{PQN}\ =\ S_{RQB} \) si \( S_{RSB}\ =\ S_{RSM} \), ceea ce conduce la concluzia problemei.