JBTST III 2007, Problema 1

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata, Virgil Nicula

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

JBTST III 2007, Problema 1

Post by Laurian Filip »

Fie ABC un triunghi si punctele M,N,P pe laturile AB,BC,CA respectiv, astfel incat CPMN sa fie paralelogram. Dreptele AN si MP se intersecteaza in punctul R, dreptele BP si MN se intersecteaza in punctul S, iar Q este punctul de intersectie al dreptelor AN si BP. Sa se arate ca S[MRQS]=S[NQP].
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Aplicand teorema lui Thales obtinem:

\( \left\|\begin{array}{ccc} \frac{AR}{RN}&=&\frac{AM}{MB}\\\\\\\\\\
\frac{MS}{SN}&=&\frac{SP}{SB}&=&\frac{NC}{NB}\\\\\\\\\\
\frac{AM}{MB}&=&\frac{NC}{NB}\end{array}\right| \ \Longrightarrow\ \frac{AR}{RN}\ =\ \frac{MS}{SN}\ \Longrightarrow^{\mbox{R.T.Th}}\ RS\ \parallel\ AB. \)


Atunci in trapezele \( RPNB \) si \( RSBM \) avem relatiile \( S_{PQN}\ =\ S_{RQB} \) si \( S_{RSB}\ =\ S_{RSM} \), ceea ce conduce la concluzia problemei.
Post Reply

Return to “Geometrie”