Functie continua...multime marginita

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Lavinia
Euclid
Posts: 14
Joined: Mon Mar 24, 2008 10:54 pm
Location: Timisoara

Functie continua...multime marginita

Post by Lavinia »

Fie \( f:{\mathbb R} \rightarrow {\mathbb R} \) o functie continua cu proprietatea ca pentru orice \( y \in Im \) \( f \), multimea \( \left\{x \in {\mathbb R}|f(x)=y\right\} \) este finita. Sa se arate ca exista \( \alpha,\beta \in Im \) \( f \), cu \( \alpha<\beta \), astfel incat multimea \( \left\{x \in{\mathbb R}|f(x) \in [\alpha,\beta]\right\} \) sa fie marginita.

Eugen Paltanea, Brasov
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Notez cu \( A_{\alpha,\beta}=\{x \in\mathbb{R}| f(x) \in [\alpha,\beta]\} \). Presupunem ca \( \forall \alpha ,\beta \in Imf \), \( A_{\alpha,\beta}=\{x \in\mathbb{R}| f(x) \in [\alpha,\beta]\} \) este nemarginita. Si fie \( a,b,c,d \in Imf \), \( a<b<c<d \). Din multimile \( A_{a,b},\ A_{b,c},\ A_{c,d} \) exista cel putin doua care sunt nemarginite superior (sau inferior). Presupunem \( A_{a,b},\ A_{c,d} \) nemarginite superior.
Deoarece multimea solutiilor ecuatiei \( f(x)=b \) este finita \( \Rightarrow \exists M \in \mathbb{R} \) a.i. \( f(x)\neq b,\forall x\geq M \). Deoarece f continua rezulta \( f(x)>b \) sau \( f(x)<b \), \( \forall x\geq M \).
Daca \( f(x)>b, \forall x\geq M \), rezulta \( A_{a,b} \) marginita, contradictie.
Daca \( f(x)<b, \forall x\geq M \Rightarrow f(x)<b<c \forall x\geq M \Rightarrow A_{c,d} \) marginita, contradictie.

Daca din cele trei multimi vor exista doua care sa fie nemarginite inferior procedam in mod analog si obtinem contradictie.
EDITED
Last edited by Radu Titiu on Thu Apr 17, 2008 12:27 pm, edited 3 times in total.
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Analiza matematica”