Inegalitate intre integrala si derivata unei f. convexe

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
Edgar Dobriban
Euclid
Posts: 10
Joined: Sat Apr 05, 2008 12:47 pm

Inegalitate intre integrala si derivata unei f. convexe

Post by Edgar Dobriban »

Fie \( f: [0,\infty) \to \mathbb{R} \) o functie derivabila, convexa cu \( f(0)=0 \).

a) Sa se arate ca \( \int_{0}^{x}f(t)dt \leq f^{\prime}(x)x^2/2, \forall x \in [0,\infty) \)
b) Sa se determine toate functiile pentru care avem egalitate.

Concursul "Grigore Moisil" 2008, Problema 3
o.m.
Euclid
Posts: 32
Joined: Sun Apr 27, 2008 2:16 pm

Post by o.m. »

a) f is convex, so for any t in [0,x] we have \( xf(t)\leq tf(x) \).

\( x\int_{0}^{x}f(t)dt\leq \frac{x^2}{2}f(x) \)

For x>0 simplify and get \( \int_{0}^{x}f(t)dt\leq \frac{x}{2}f(x) \) (1)

But \( f(x)=\int_{0}^{x}f^{\prime}(t)dt \leq xf^{\prime}(x) \) (2)
since f' increasing.

(1) and (2) prove the inequality

b) If \( \int_{0}^{x}f(t)dt=\frac{x^2}{2}f^{\prime}(x) \), then LHS is derivable, so RHS is derivable.

Derivate the equality =>

\( x^2y^{{\prime}{\prime}}+2xy^{\prime}-2y=0 \)

\( f(x)=ax+\frac{b}{x^2} \)

\( f(0)=0 \)

\( f(x)=ax \)
Post Reply

Return to “Analiza matematica”