Fie \( f: [0,\infty) \to \mathbb{R} \) o functie derivabila, convexa cu \( f(0)=0 \).
a) Sa se arate ca \( \int_{0}^{x}f(t)dt \leq f^{\prime}(x)x^2/2, \forall x \in [0,\infty) \)
b) Sa se determine toate functiile pentru care avem egalitate.
Concursul "Grigore Moisil" 2008, Problema 3
Inegalitate intre integrala si derivata unei f. convexe
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
-
Edgar Dobriban
- Euclid
- Posts: 10
- Joined: Sat Apr 05, 2008 12:47 pm
a) f is convex, so for any t in [0,x] we have \( xf(t)\leq tf(x) \).
\( x\int_{0}^{x}f(t)dt\leq \frac{x^2}{2}f(x) \)
For x>0 simplify and get \( \int_{0}^{x}f(t)dt\leq \frac{x}{2}f(x) \) (1)
But \( f(x)=\int_{0}^{x}f^{\prime}(t)dt \leq xf^{\prime}(x) \) (2)
since f' increasing.
(1) and (2) prove the inequality
b) If \( \int_{0}^{x}f(t)dt=\frac{x^2}{2}f^{\prime}(x) \), then LHS is derivable, so RHS is derivable.
Derivate the equality =>
\( x^2y^{{\prime}{\prime}}+2xy^{\prime}-2y=0 \)
\( f(x)=ax+\frac{b}{x^2} \)
\( f(0)=0 \)
\( f(x)=ax \)
\( x\int_{0}^{x}f(t)dt\leq \frac{x^2}{2}f(x) \)
For x>0 simplify and get \( \int_{0}^{x}f(t)dt\leq \frac{x}{2}f(x) \) (1)
But \( f(x)=\int_{0}^{x}f^{\prime}(t)dt \leq xf^{\prime}(x) \) (2)
since f' increasing.
(1) and (2) prove the inequality
b) If \( \int_{0}^{x}f(t)dt=\frac{x^2}{2}f^{\prime}(x) \), then LHS is derivable, so RHS is derivable.
Derivate the equality =>
\( x^2y^{{\prime}{\prime}}+2xy^{\prime}-2y=0 \)
\( f(x)=ax+\frac{b}{x^2} \)
\( f(0)=0 \)
\( f(x)=ax \)