primitate

Moderators: Bogdan Posa, Laurian Filip

Post Reply
handleman
Euclid
Posts: 26
Joined: Sun Mar 16, 2008 5:01 pm
Location: bucuresti

primitate

Post by handleman »

Determinati numarul \( \bar{abcd} \) stiind ca produsul numerelor \( \bar{ab} \) si \( \bar{cd} \) este 437.
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

\( 437=19*23 \); cum 19 si 23 sunt prime \( \Rightarrow \bar {ab}=19 \) si \( \bar {cd}=23 \) , sau \( \bar {cd}=19 \) si \( \bar {ab}=23 \)
Atunci avem: \( \bar {abcd} \in {{1923, 2319}} \).
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Post Reply

Return to “Clasa a VI-a”