Page 1 of 1

inegalitate in tetraedru

Posted: Tue Mar 18, 2008 11:59 am
by Bogdan Posa
In orice tetraedru ABCD are loc inegalitatea :
\( \frac{1}{aria (ABC)}+\frac{1}{aria (BCD)}+\frac{1}{aria (CDA)}+\frac{1}{aria (DAB)} \geq \frac{16r}{3vol (ABCD)} \) unde r este raza sferei inscrise in tetraedru

Mihaly Bencze, Brasov , RMT nr 1 /2008

Posted: Thu Mar 27, 2008 2:42 pm
by Beniamin Bogosel
Folosim inegalitatea dintre media armonica si aritmetica:
\( \frac{4}{\frac{1}{\sigma(ABC)}+\frac{1}{\sigma(ABD)}+\frac{1}{\sigma(ACD)}+\frac{1}{\sigma(BCD)}}\leq
\frac{\sigma(ABC)+\sigma(ABD)+\sigma(ACD)+\sigma(BCD)}{4}=\frac{A_l}{4}=\frac{\mathcal 3V_{ABCD}}{4r} \)
.

Inversam, inmultim cu 4 si obtinem ceea ce trebuia demonstrat.