In orice tetraedru ABCD are loc inegalitatea :
\( \frac{1}{aria (ABC)}+\frac{1}{aria (BCD)}+\frac{1}{aria (CDA)}+\frac{1}{aria (DAB)} \geq \frac{16r}{3vol (ABCD)} \) unde r este raza sferei inscrise in tetraedru
Mihaly Bencze, Brasov , RMT nr 1 /2008
inegalitate in tetraedru
Moderators: Bogdan Posa, Laurian Filip
- Bogdan Posa
- Pitagora
- Posts: 77
- Joined: Fri Dec 14, 2007 3:47 pm
- Location: Motru , Gorj , Romania
- Contact:
inegalitate in tetraedru
Gradul de cultură al unei ţări se măsoară astăzi, prin nivelul matematic al locuitorilor ţării (André Lichnerowicz)
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Folosim inegalitatea dintre media armonica si aritmetica:
\( \frac{4}{\frac{1}{\sigma(ABC)}+\frac{1}{\sigma(ABD)}+\frac{1}{\sigma(ACD)}+\frac{1}{\sigma(BCD)}}\leq
\frac{\sigma(ABC)+\sigma(ABD)+\sigma(ACD)+\sigma(BCD)}{4}=\frac{A_l}{4}=\frac{\mathcal 3V_{ABCD}}{4r} \).
Inversam, inmultim cu 4 si obtinem ceea ce trebuia demonstrat.
\( \frac{4}{\frac{1}{\sigma(ABC)}+\frac{1}{\sigma(ABD)}+\frac{1}{\sigma(ACD)}+\frac{1}{\sigma(BCD)}}\leq
\frac{\sigma(ABC)+\sigma(ABD)+\sigma(ACD)+\sigma(BCD)}{4}=\frac{A_l}{4}=\frac{\mathcal 3V_{ABCD}}{4r} \).
Inversam, inmultim cu 4 si obtinem ceea ce trebuia demonstrat.