Functie injectiva
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
Functie injectiva
Demonstrati ca \( f:\mathbb{R}\rightarrow \mathbb{R} \), \( f(x)=x+sin x \) este injectiva.
n-ar fi rau sa fie bine 
-
Bogdan Cebere
- Thales
- Posts: 145
- Joined: Sun Nov 04, 2007 1:04 pm
Presupunem ca exista \( x_1,x_2 \) astfel incat \( f(x_1)=f(x_2) \).
Rezulta ca \( x_1+\sin{x_1}=x_2+sin{x_2} \). Sau
\( sin{x_2}-sin{x_1}=x_1-x_2 \). Dar
\( |sin{x_1}-sin{x_2}|=2|sin{\frac{x_1-x_2}{2}}||cos{\frac{x_1+x_2}{2}}|\leq|x_1-x_2| \)
cu egalitate cand \( x_1=x_2=0. \) (Am folosit \( \sin x \leq x \) cu egalitate cand x=0.) Deci functia este injectiva.
Rezulta ca \( x_1+\sin{x_1}=x_2+sin{x_2} \). Sau
\( sin{x_2}-sin{x_1}=x_1-x_2 \). Dar
\( |sin{x_1}-sin{x_2}|=2|sin{\frac{x_1-x_2}{2}}||cos{\frac{x_1+x_2}{2}}|\leq|x_1-x_2| \)
cu egalitate cand \( x_1=x_2=0. \) (Am folosit \( \sin x \leq x \) cu egalitate cand x=0.) Deci functia este injectiva.