Se stie ca \( \left\|\ \begin{array}{ccc}
(b+c)^2 & \le & 2(b^2+c^2)\\\\
2(b^4+c^4) & \ge & (b^2+c^2)^2\end{array}\ \right\|\ \) . Sa se arate ca \( \underline {\overline {\left|\ bc\ \ge\ 0\ \Longrightarrow\ (b+c)^2(b^4+c^4)\ \ge\ (b^2+c^2)^3\ \right|}} \) .
Comportarea "produsului" a doua inegalitati
Moderators: Bogdan Posa, Laurian Filip
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Notam \( M=(b+c)^2(b^4+c^4)-(b^2+c^2)^3 \). Atunci \( M=(b^2+2bc+c^2)(b^4+c^4)-(b^6+3b^4c^2+3c^4b^2+c^6) \)
\( \Longleftrightarrow\ M=b^6+b^2c^4+2b^5c+2bc^5+c^2b^4+c^6-b^6-3b^4c^2-3c^4b^2-c^6=2b^5c+2bc^5-2b^2c^4-2b^4c^2 \)
\( \Longleftrightarrow\ M=2bc(b^4+c^4-b^3c-bc^3)=2bc\left\[(b^3(b-c)-c^3(b-c)\right\]\ \Longleftrightarrow\ \fbox{\ M=2bc(b-c)^2(b^2+bc+c^2)\ } \)
Cum \( bc\ge 0 \) , \( (b-c)^2\ge 0 \) si \( b^2+bc+c^2\ge 0\ \Longrightarrow\ M\ge 0 \).
\( \Longleftrightarrow\ M=b^6+b^2c^4+2b^5c+2bc^5+c^2b^4+c^6-b^6-3b^4c^2-3c^4b^2-c^6=2b^5c+2bc^5-2b^2c^4-2b^4c^2 \)
\( \Longleftrightarrow\ M=2bc(b^4+c^4-b^3c-bc^3)=2bc\left\[(b^3(b-c)-c^3(b-c)\right\]\ \Longleftrightarrow\ \fbox{\ M=2bc(b-c)^2(b^2+bc+c^2)\ } \)
Cum \( bc\ge 0 \) , \( (b-c)^2\ge 0 \) si \( b^2+bc+c^2\ge 0\ \Longrightarrow\ M\ge 0 \).
Last edited by Mateescu Constantin on Thu Sep 02, 2010 9:21 pm, edited 2 times in total.
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact: