Limita integrala

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Limita integrala

Post by Cezar Lupu »

Sa se calculze
\( \lim_{n\to\infty}\sum_{k=1}^{n}\frac{1}{n+k} \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

\( \lim_{n\to\infty}\sum_{k=1}^n \frac{1}{n+k}=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n \frac{1}{1+\frac{k}{n}}=\int_{0}^1 \frac{1}{1+x}dx=\ln(1+1)-\ln(1+0)=\ln2 \)
A mathematician is a machine for turning coffee into theorems.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Exista o solutie simpla la nivelul clasei a XI - a (consecinta a numarului \( e \) ).
Moderatorii pot posta aceasta problema si la clasa a XI - a.
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Se pot vedea si alte solutii aici
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Clasa a 12-a”