bac 2008

Post Reply
cosmin
Euclid
Posts: 19
Joined: Wed Oct 24, 2007 1:32 pm
Location: Otelu-Rosu

bac 2008

Post by cosmin »

iata o problema propusa la bac 2008:
Se considera sirul \( a_{n} \) dat de \( a_{1}\in\left(0,1\right) \) cu \( a_{n+1}=a_{n}\cdot(1-sqrt{a_{n}}) \) pentru orice n numar natural nenul.
a)sa se arate ca \( a_{n}\in\left(0,1\right) \)
b)sa se demonstreze ca sirul dat e convergent si sa i se calculeze limita
c)sa se arate ca sirul \( b_{n}=a_{1}^2+a_{2}^2+...+a_{n}^2 \) e marginit superior de \( a_{1} \).
User avatar
Bogdan Posa
Pitagora
Posts: 77
Joined: Fri Dec 14, 2007 3:47 pm
Location: Motru , Gorj , Romania
Contact:

Post by Bogdan Posa »

c)\( a_{n+1}=a_{n}\cdot(1-sqrt{a_{n}}) < a_{n}(1-a_{n})=a_{n}-a_{n}^2 \)
Deci \( a_{n}^2<a_{n}-a_{n+1} \).
Insumand aceasta relatie pt valori de la 1 la n obtinem concluzia
Post Reply

Return to “BACALAUREAT”