Inegalitate geometrica in sin si cos de unghiuri pe jumatate

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Inegalitate geometrica in sin si cos de unghiuri pe jumatate

Post by Cezar Lupu »

Sa se demonstreze ca in orice triunghi \( ABC \) are loc inegalitatea:

\( \sum_{cyc}\frac{1}{\sin^2\frac{A}{2}\cos\frac{A}{2}}\geq 4\sqrt{3}\cdot\frac{R}{r} \).

Cezar Lupu
Last edited by Cezar Lupu on Mon Aug 25, 2008 4:56 pm, edited 1 time in total.
algeomath
Posts: 1
Joined: Fri Aug 22, 2008 3:23 pm

Post by algeomath »

Hi Cezar my friend, it is along time I haven't met you. Here is my solution:

Let \( I \) be incenter
use \( 2\sin\frac{A}{2}\cos\frac{A}{2}=\sin A=\frac{a}{2R},\sin\frac{A}{2}=\frac{r}{IA} \), it is equivalent to

\( \sum\frac{4RIA}{ra}\ge 4\sqrt{3}\frac{R}{r}\Leftrightarrow \sum\frac{IA}{a}\ge\sqrt{3}
\)


Which is true by \( \sum \frac{PA}{a}\ge\sqrt{3} \) forall \( P \) in the plane.

:)
Post Reply

Return to “Clasa a X-a”