Olimpiada Ungaria
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
Olimpiada Ungaria
Aratati ca ecuatia \( (x+1)^2+(x+2)^2+...+(x+99)^2=y^z \) nu are solutii in numere intregi , \( x,y,z \) cu \( z>1 \) .
. A snake that slithers on the ground can only dream of flying through the air.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
\( \sum_{i=1}^99 (x+i)^2=99x^2+9900x+\frac{99\cdot 100 \cdot 199}{6} \).
Cred ca ideea ar fi sa demonstram ca numarul dat se divide cu 11 (ceea ce e evident) si nu se divide cu 121=\( 11^2 \).
Cred ca ideea ar fi sa demonstram ca numarul dat se divide cu 11 (ceea ce e evident) si nu se divide cu 121=\( 11^2 \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Solutie
Se obtine \( y^z=33(3x^2+300x+50\cdot 199)\Longrightarrow 3|y^z. \) Cum \( z\geq 2\Longrightarrow 3^2|y^z \) Dar este evident faptul ca \( 3^2 \) nu divide \( 33(3x^2+300x+50\cdot 199). \)
E o ecuatie diofantiana cunoscuta (Hungary 1998). Apare in cartea lui Titu Andreescu: Introducere in studiul ecuatiilor diofantiene, PEN (vezi H 78 ), etc
E o ecuatie diofantiana cunoscuta (Hungary 1998). Apare in cartea lui Titu Andreescu: Introducere in studiul ecuatiilor diofantiene, PEN (vezi H 78 ), etc
Feuerbach