Fie \( x,y,z\in(0,\infty) \) astfel incat \( x+y+z=xyz \). Demonstrati ca:
\( \frac{1}{x+y+\sqrt{xy}}+\frac{1}{y+z+\sqrt{yz}}+\frac{1}{z+x+\sqrt{zx}}\le \frac{\sqrt{3}}{3} \)
Concursul ,,Cezar Ivanescu,, 2006
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
\( \sum_{cyc}\frac{1}{x+y+\sqrt{xy}}\le\sum_{cyc}\frac{1}{3\sqrt{xy}} \)
Ramane de demonstrat ca \( \sum_{cyc}\frac{1}{sqrt{xy}}\le\sqrt{3} \)
Relatia e echivalenta cu \( \sum_{cyc}\sqrt{x}\le\sqrt{3xyz} \)
Din inegalitatea Cauchy Buniakovsky Schwarz avem \( (\sqrt{x}\cdot 1+\sqrt{y}\cdot 1+\sqrt{z}\cdot 1)^2\le 3(x+y+z)=3xyz\Longrightarrow \sum_{cyc}sqrt{x}\le\sqrt{3xyz} \), adica inegalitatea cautata.
Ramane de demonstrat ca \( \sum_{cyc}\frac{1}{sqrt{xy}}\le\sqrt{3} \)
Relatia e echivalenta cu \( \sum_{cyc}\sqrt{x}\le\sqrt{3xyz} \)
Din inegalitatea Cauchy Buniakovsky Schwarz avem \( (\sqrt{x}\cdot 1+\sqrt{y}\cdot 1+\sqrt{z}\cdot 1)^2\le 3(x+y+z)=3xyz\Longrightarrow \sum_{cyc}sqrt{x}\le\sqrt{3xyz} \), adica inegalitatea cautata.
Last edited by DrAGos Calinescu on Thu Jan 15, 2009 11:50 pm, edited 1 time in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)