Dan Barbilian 2008

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
andy crisan
Pitagora
Posts: 56
Joined: Sun Dec 28, 2008 5:50 pm
Location: Pitesti

Dan Barbilian 2008

Post by andy crisan »

Sa se arate ca in orice triunghi are loc relatia.
\( 2^a+2^b+2^c>2^m^a+2^m^b+2^m^c \), notatiile fiind cele cunoscute.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

avem \( \sum2^a=\sum\frac{2^a+2^b}{2}\geq\sum2^{\frac{a+b}{2}}>\sum2^{m_c} \), deoarece:
\( m_c^2=\frac{2(a^2+b^2)-c^2}{4}\leq\frac{2(a^2+b^2)-(a-b)^2}{4}=(\frac{a+b}{2})^2 \).
n-ar fi rau sa fie bine :)
Post Reply

Return to “Clasa a X-a”