O.N.M. 1997; M.B.

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

O.N.M. 1997; M.B.

Post by Claudiu Mindrila »

Problema. Fie \( x,y,z \) numere pozitive astfel incat \( xyz=1 \). Sa se arate ca \( \sum \frac{x^9+y^9}{x^6+x^3y^3+y^6} \geq 2 \).
Mircea Becheanu, O.N.M. 1997
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notand \( a=x^3 \) , \( b=y^3 \) \( c=z^3 \) inegalitatea se reduce la

\( \sum {\frac{a^3+b^3}{a^2+ab+b^2}}\ge 2 \) cu \( abc=1 \)

Insa \( LHS\ge\sum \frac{(a^2+b^2)(a+b)}{2(a^2+\frac{a^2+b^2}{2}+b^2)}=\sum{\frac{(a^2+b^2)(a+b)}{3(a^2+b^2)}}=\frac{2}{3}\sum a\ge2\sqrt[3]{abc}=RHS \)
Post Reply

Return to “Clasa a VIII-a”