Maraton de probleme de clasa a V-a - semestrul I

Luiza
Euclid
Posts: 18
Joined: Thu Dec 18, 2008 7:39 pm
Location: Cehu Silvaniei , Salaj

Post by Luiza »

Problema 18
Aratati ca numarul \( A=9^{2k}-7^{4k} \) este divizibil cu 10 .
Humuhumunukunukuapua
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

\( A=-40B \)
n-ar fi rau sa fie bine :)
User avatar
miruna.lazar
Bernoulli
Posts: 224
Joined: Wed Oct 08, 2008 8:41 pm
Location: Tulcea

Post by miruna.lazar »

A= \( 9^{2k} - 7^{4k} \)

\( u(9^{2k}) = 1 \)

\( u(7^{4k}) = 1 \)

1-1 = 0 => \( \overline {............0 } \vdots 10 \)
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Determinati cifrele \( a,b,c,d \) pentru care \( c^{\overline{ab}}=\overline{abcd} \) si \( \frac{d}{c}=2 \).
Claudiu Mindrila, Suplimentul G.M.-B. 4/2008
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

\( c^{\overline{ab}}=\overline{abcd}\Rightarrow c=2\Rightarrow d=4\Rightarrow \overline{abcd}=1024 \).
n-ar fi rau sa fie bine :)
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Problema 20
Sa se determine cardinalul multimii : A={\( \overline{ab}\ |\ \overline{ab}=a\cdot b+a+b \) , unde a si b sunt cifre in baza 10 }
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Quit
Euclid
Posts: 23
Joined: Sun Nov 30, 2008 10:53 am
Location: Babadag

Post by Quit »

\( 10a+b=ab+a+b \Leftrightarrow 9a=ab \Leftrightarrow b=9 \Leftrightarrow A=\{19,29,39,49,59,69,79,89,99\} \Leftrightarrow \) Card \( A=9 \)
My physiology : if I see a problem I solve it ; if I don`t see problems I`m looking for one .
User avatar
Quit
Euclid
Posts: 23
Joined: Sun Nov 30, 2008 10:53 am
Location: Babadag

Post by Quit »

Problema 21
Sa se arate ca suma \( 2001^p+2001^p+...+2001^p \) , care are \( 2000 \) de termeni , este divizibila cu \( 87\cdot 10^3 \) , unde p este un numar natural nenul .
Last edited by Quit on Mon Jan 05, 2009 11:17 am, edited 1 time in total.
My physiology : if I see a problem I solve it ; if I don`t see problems I`m looking for one .
Luiza
Euclid
Posts: 18
Joined: Thu Dec 18, 2008 7:39 pm
Location: Cehu Silvaniei , Salaj

Post by Luiza »

Dam factor comun pe \( 2001^p \)
\( S=2001^p\cdot 2000 \Rightarrow 1000 / S \)
\( 87 / 2001\Rightarrow 87 \cdot 10^3 \) divide \( S \)
Humuhumunukunukuapua
Luiza
Euclid
Posts: 18
Joined: Thu Dec 18, 2008 7:39 pm
Location: Cehu Silvaniei , Salaj

Post by Luiza »

Problema 22
Impartind un numar natural a la 63 obtinem restul 34 . Ce rest obtinem daca impartim numarul a la 21 ?
Humuhumunukunukuapua
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Luiza wrote:Problema 22
Impartind un numar natural a la 63 obtinem restul 34 . Ce rest obtinem daca impartim numarul a la 21 ?
63 se imparte exact la 21 deci restul impartirii numarului la 21 este restul impartirii lui 34 la 21 adica 13.
Last edited by Marius Mainea on Mon Jan 05, 2009 4:48 pm, edited 1 time in total.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Vreti sa spuneti restul impartirii lui 34 la 21 adica 13 .
. A snake that slithers on the ground can only dream of flying through the air.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Putin mai dificila.
Problema. Determinati restul impartirii numarului \( 2008^{2008} \) la \( 49 \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Quit
Euclid
Posts: 23
Joined: Sun Nov 30, 2008 10:53 am
Location: Babadag

Post by Quit »

\( 2008^{2008}=2008^{2007}\cdot 2008=2008^{2007}\cdot(2009-1)=2009\cdot 2008^{2007}-2008^{2007}=2009\cdot 2008^{2007}-2008^{2006}\cdot 2008=2009\cdot 2008^{2007}-2008^{2006}(2009-1)= \)
\( =2009\cdot 2008^{2007}-2009\cdot 2008^{2006}-2008^{2006}=...=2009\cdot 2008^{2007}-2009\cdot 2008^{2006}-2009\cdot 2008^{2005}-...-2008= \)

\( =2009\cdot 2008^{2007}-2009\cdot 2008^{2006}-2009\cdot 2008^{2005}-...-2009+1=2009(2008^{2007}-2008^{2006}-...-1)+1 \)
Stiind ca 2009 este divizibil cu 49 rezulta ca restul este 1 .
My physiology : if I see a problem I solve it ; if I don`t see problems I`m looking for one .
User avatar
Quit
Euclid
Posts: 23
Joined: Sun Nov 30, 2008 10:53 am
Location: Babadag

Post by Quit »

Problema 24

Sa se afle \( n\in\mathb{N} \) din egalitatea :
\( n^2+n+1000^2=1+2+3+...+1999 \)
My physiology : if I see a problem I solve it ; if I don`t see problems I`m looking for one .
Luiza
Euclid
Posts: 18
Joined: Thu Dec 18, 2008 7:39 pm
Location: Cehu Silvaniei , Salaj

Post by Luiza »

\( n^2+n+1000^2=\frac{2000\cdot 1999}{2} \Leftrightarrow n^2+n =1000 \cdot 999 \Leftrightarrow n(n+1)=1000\cdot 999 \Leftrightarrow n=999 \) .
Humuhumunukunukuapua
Luiza
Euclid
Posts: 18
Joined: Thu Dec 18, 2008 7:39 pm
Location: Cehu Silvaniei , Salaj

Post by Luiza »

Problema 25
Aratati ca numarul \( 5^{n+1} \) se poate scrie ca suma de cinci numere consecutive , oricare \( n\in \mathb{N}* \) .
Humuhumunukunukuapua
Post Reply

Return to “Clasa a 5-a”