Fie \( f:[0,1]\to \mathbb{R} \) o functie continua pentru care
\( \int_0^1f(x)dx=\int_0^1f(x^2)dx \).
Sa se arate ca ecuatia
\( f((\frac{1-x}{2})^2)=f((\frac{1+x}{2})^2) \)
are cel putin trei solutii reale.
GM 4/2002
Egalitate integrala si ecuatie cu cel putin trei solutii
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Cu schimbarea de variabila \( x=y^2 \) in stanga obtinem
\( \int_0^1(2x-1)f(x^2)dx=0 \).
Apoi cu schimbarea \( x=\frac{1-z}{2} \)
\( \int_{-1}^1xf((\frac{1-x}{2})^2)dx=0 \), si de aici folosind
formula de integrare pe un interval centrat in origine \( \int_{-a}^af(x)dx=\int_0^a(f(x)+f(-x))dx \),
obtinem
\( \int_0^1x(f((\frac{1-x}{2})^2)-f((\frac{1+x}{2})^2))dx=0 \).
Apoi aplicand teorema de medie exista \( c\in(0,1) \) astfel incat \( f((\frac{1-c}{2})^2)=f((\frac{1+c}{2})^2) \).
Asadar ecuatia are cel putin solutiile \( 0,\ c,\ -c \).
\( \int_0^1(2x-1)f(x^2)dx=0 \).
Apoi cu schimbarea \( x=\frac{1-z}{2} \)
\( \int_{-1}^1xf((\frac{1-x}{2})^2)dx=0 \), si de aici folosind
formula de integrare pe un interval centrat in origine \( \int_{-a}^af(x)dx=\int_0^a(f(x)+f(-x))dx \),
obtinem
\( \int_0^1x(f((\frac{1-x}{2})^2)-f((\frac{1+x}{2})^2))dx=0 \).
Apoi aplicand teorema de medie exista \( c\in(0,1) \) astfel incat \( f((\frac{1-c}{2})^2)=f((\frac{1+c}{2})^2) \).
Asadar ecuatia are cel putin solutiile \( 0,\ c,\ -c \).
Last edited by Marius Mainea on Sun Dec 28, 2008 4:41 pm, edited 1 time in total.