Fie a,b,c>0 astfel incat \( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1 \). Demonstrati ca:
\( \frac{a^3}{(b+c)(a+1)}+\frac{b^3}{(c+a)(b+1)}+\frac{c^3}{(a+b)(c+1)}\ge \frac{27}{8}. \)
Inegalitate conditionata 5
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Solutie!
Din Inegalitatea Cauchy-Buniakowski-Schwarz avem: \( \sum_{cyc}\frac{a^3}{(b+c)(a+1)}=\sum_{cyc}\frac{a^2}{b+c+\frac{b+c}{a}}\geq \frac{(a+b+c)^2}{2(a+b+c)+\sum_{cyc}\frac{b+c}{a}}=\frac{(a+b+c)^2}{2(a+b+c)+(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-3)}=\frac{(a+b+c)^2}{3(a+b+c)-3}\geq\frac{27}{8} \)
Notam \( x=a+b+c. \) Evident din Inegalitatea mediilor(AM-HM) obtinem ca: \( x\geq 9 \)
Inegalitatea este echivalenta cu: \( 8x^2-81x+81\geq 0. \) Fie \( f:[9,\infty)\to\mathbb{R} \), cu \( f(x)=8x^2-81x+81 \)
Avem: \( \Delta=63^2. \) Deci \( x_{1}=\frac{9}{8}<9=x_{2} \)
Deci \( f \) ia valori pozitive pe intervalul \( [9,\infty). \)
Notam \( x=a+b+c. \) Evident din Inegalitatea mediilor(AM-HM) obtinem ca: \( x\geq 9 \)
Inegalitatea este echivalenta cu: \( 8x^2-81x+81\geq 0. \) Fie \( f:[9,\infty)\to\mathbb{R} \), cu \( f(x)=8x^2-81x+81 \)
Avem: \( \Delta=63^2. \) Deci \( x_{1}=\frac{9}{8}<9=x_{2} \)
Deci \( f \) ia valori pozitive pe intervalul \( [9,\infty). \)
Feuerbach