inegalitate clasica deja

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

inegalitate clasica deja

Post by Cezar Lupu »

Fie \( x, y, z \) trei numere reale strict pozitive. Sa se arate ca

\( \frac{x^2+y^2+z^2}{xy+yz+zx}+\frac{8xyz}{(x+y)(y+z)(z+x)}\geq 2. \)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Inegalitatea este echivalenta cu

\( \sum_{sym}x^4y+\sum_{sym}x^2y^2z\ge\sum_{sym}x^3y^2+\sum_{sym}x^3yz \) sau

\( \sum_{cyc}xy(x-y)^2(x+y-z)\ge0 \) care este adevarata (demonstrati!)
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

Observatie!

Post by maxim bogdan »

Aceasta inegalitate poarta numele de Inegalitatea lui Hungktn.
Feuerbach
Post Reply

Return to “Clasa a IX-a”