Fie x,y,z>0 astfel incat xy+yz+zx=1. Demonstrati ca
\( \frac{1}{x+x^3}+\frac{1}{y+y^3}+\frac{1}{z+z^3}\ge \frac{9\sqrt{3}}{4} \)
Inegalitate conditionata 3
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Solutie!
Avem: \( S=\sum_{cyc}\frac{1}{x+x^3}=\sum_{cyc}\frac{1}{x(1+x^2)}=\sum_{cyc}\frac{1}{x}\cdot\frac{1}{(x+y)(x+z)} \)
WLOG \( x\geq y\geq z\Rightarrow \frac{1}{x}\leq\frac{1}{y}\leq\frac{1}{z} \) si \( \frac{1}{1+x^2}\leq\frac{1}{1+y^2}\leq\frac{1}{1+z^2}. \)
Acum, din Inegalitatea lui Cebasev ne rezulta ca:
\( 3S\geq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(\frac{1}{(x+y)(x+z)}+\frac{1}{(y+z)(y+x)}+\frac{1}{(z+x)(z+y)})=\frac{1}{xyz}\cdot\frac{2(x+y+z)}{(x+y)(y+z)(z+x)}\geq\frac{27\sqrt{3}}{4} \)
\( \Leftrightarrow 8(x+y+z)\geq 27\sqrt{3}xyz(x+y)(y+z)(z+x)=\sqrt{3}\cdot 27(1-xy)(1-yz)(1-zx). \)
Din Inegalitatea mediilor obtinem ca : \( 27(1-xy)(1-yz)(1-zx)\leq(1-xy+1-yz+1-zx)^3=8 \)
Mai ramane sa demonstram ca: \( x+y+z\geq \sqrt{3}\Leftrightarrow (x+y+z)^2\geq 3=3(xy+yz+zx) \) ceea ce este evident. Deci inegalitatea noastra e demonstrata!
WLOG \( x\geq y\geq z\Rightarrow \frac{1}{x}\leq\frac{1}{y}\leq\frac{1}{z} \) si \( \frac{1}{1+x^2}\leq\frac{1}{1+y^2}\leq\frac{1}{1+z^2}. \)
Acum, din Inegalitatea lui Cebasev ne rezulta ca:
\( 3S\geq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(\frac{1}{(x+y)(x+z)}+\frac{1}{(y+z)(y+x)}+\frac{1}{(z+x)(z+y)})=\frac{1}{xyz}\cdot\frac{2(x+y+z)}{(x+y)(y+z)(z+x)}\geq\frac{27\sqrt{3}}{4} \)
\( \Leftrightarrow 8(x+y+z)\geq 27\sqrt{3}xyz(x+y)(y+z)(z+x)=\sqrt{3}\cdot 27(1-xy)(1-yz)(1-zx). \)
Din Inegalitatea mediilor obtinem ca : \( 27(1-xy)(1-yz)(1-zx)\leq(1-xy+1-yz+1-zx)^3=8 \)
Mai ramane sa demonstram ca: \( x+y+z\geq \sqrt{3}\Leftrightarrow (x+y+z)^2\geq 3=3(xy+yz+zx) \) ceea ce este evident. Deci inegalitatea noastra e demonstrata!
Feuerbach
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)