Inegalitate cu laturile unui triunghi.

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate cu laturile unui triunghi.

Post by Claudiu Mindrila »

Sa se arate ca in orice triunghi avem relatia \( 6S<a^2+b^2+c^2 \), unde \( S \) este aria triunghiului cu laturile \( a,b,c \).

Ion si Lucica Preda, Concursul "Mathematica-Modus Vivendi", 2008
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Solutia 1)

\( S=\frac{ab\sin C}{2}\le \frac{ab}{2}\le \frac{a^2+b^2}{4} \) si analog

\( S\le \frac{b^2+c^2}{4} \), ...

Prin adunare rezulta concluzia.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Reamintim aici lantul \( 4S\sqrt 3\stackrel {(W)}{\ \ \le\ \ \ }a^2+b^2+c^2\ \le\ 9R^2. \)
Last edited by Virgil Nicula on Wed Jan 28, 2009 11:35 pm, edited 7 times in total.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

**** EROARE ****
Last edited by Virgil Nicula on Tue Dec 30, 2008 6:48 pm, edited 37 times in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Solutia 2):


\( \sqrt{(p-a)(p-b)}\le \frac{p-a+p-b}{2}=\frac{c}{2} \) si analogele de unde prin inmultire

\( (p-a)(p-b)(p-c)\le \frac{abc}{8} \) si atunci

\( 4S\sqrt{3}\le4\sqrt{3p\frac{abc}{8}}=\sqrt{3(a+b+c)abc}\le \sqrt{3((ab)^2+(bc)^2+(ca)^2)}\le a^2+b^2+c^2 \)
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

**** EROARE ****
Last edited by Virgil Nicula on Tue Dec 30, 2008 6:47 pm, edited 43 times in total.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Si acum cine demonstreaza la nivel de clasa a VII - a inegalitatea din partea dreapta, adica \( a^2+b^2+c^2\le 9R^2\ ?! \)
Dupa aceea vom face impreuna comentarii ajutati si de link - uri, eventual alte solutii, intariri sau extinderi ...
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

A se vedea si "P.G. Popescu, I. V. Maftei, J. L. Diaz Barrero, M. Dinca-Inegalitati matematice: modele inovatoare", Ed. Didactica si Pedagogica, 2007".

Sarbatori fericite!
Claudiu Mindrila
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se stie ca \( AH=2R\cos A \) si analoagele de unde \( AH^2=4r^2(1-\sin^2A)=4R^2(1-\frac{a^2}{4R^2})=4R^2-a^2 \)

\( BH^2=4R^2-b^2 \), \( CH^2=4R^2-c^2 \)

Daca A'respectiv A'' sunt intersectiile lui AH cu BC respectiv cercul circumscris triunghiului ABC atunci se stie ca A''H=2A'H=2BHcosC.

Folosind puterea punctului fata de cerc \( AH\cdot HA^{\prime\prime}=R^2-OH^2 \) (1)

Deci folosind teorema lui Pitagora generalizata \( R^2-OH^2=2AHBH\cos C=c^2-AH^2-BH^2=c^2-4R^2+b^2-4R^2+a^2=a^2+b^2+c^2-8R^2 \) (2)

Din (1) si (2) rezulta ca \( OH^2=9R^2-a^2-b^2-c^2\ge 0 \)

si a doua inegalitate este demonstrata.
Post Reply

Return to “Clasa a VIII-a”