Calculati \( \left( \matrix{ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}} \right)^{2008} \).
Internet Olympiad, Ariel University of Samaria, Israel
Internet Olympiad Problema 2
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Internet Olympiad Problema 2
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Re: Internet Olympiad Problema 2
Beniamin Bogosel wrote:Calculati \( \left( \matrix{ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}} \right)^{2008} \).
Internet Olympiad, Ariel University of Samaria, Israel
\( \left( \matrix{ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}} \right)^{2008}=\left( \matrix{ cos a & sin a \\ -sin a & cos a \right)^{2008}=\left(\matrix {cos{2008a}& sin{2008a}\\-sin 2008a & cos2008a}\right)=-\left( \matrix{ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}} \right) \)
unde \( a=\frac{\pi}{3} \)