Inegalitate cu variabile mai mari ca -1.

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate cu variabile mai mari ca -1.

Post by Claudiu Mindrila »

Demonstrati ca oricare ar fi \( x,y,z \in (-1, \infty) \), are loc inegalitatea
\( \frac{(x+1)^2+yz-1}{y+z+2}+\frac{(y+1)^2+xz-1}{ x+z+2}+\frac{(z+1)^2+xy-1}{x+y+2} \geq x+y+z \).
Claudiu Coanda, Concursul "Ion Ciolac", 2005
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notand x+1=a , y+1=b , z+1=c inegalitatea se reduce la

\( \frac{a^2+bc}{b+c}+\frac{b^2+ca}{c+a}+\frac{c^2+ab}{a+b}\ge a+b+c \)

care este cunoscuta.
Post Reply

Return to “Clasa a VIII-a”