Concursul "Nicolae Paun", 2008, problema 1

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Concursul "Nicolae Paun", 2008, problema 1

Post by Claudiu Mindrila »

Fie \( a,b,c \) numere reale strict pozitive astfel incat \( a^2+b^2+c^2=1 \). Demonstrati ca:
\( \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq 3+\frac{2(a^3+b^3+c^3)}{abc} \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( \sum{\frac{1}{a^2}}=\sum{\frac{a^2+b^2+c^2}{a^2}}=3+\sum{(\frac{b^2}{a^2}+\frac{c^2}{a^2})}=3+\sum{(\frac{a^2}{b^2}+\frac{a^2}{c^2)}\ge 3+\sum{2\frac{a}{b}\cdot \frac{a}{c}} \)
Post Reply

Return to “Clasa a VIII-a”