Inca o functie
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
Inca o functie
Fie \( f:\mathb{Z}\rightarrow\mathb{Z} \) asfel incat \( f(a+b)\ge f(a)+f(b) \) , \( (\forall) \)\( a;b\in\mathb{Z} \) si \( f(1)=|f(-1)|=1 \) . Sa se arate ca \( f(0)=0 \) si \( f(2)=2 \) .
. A snake that slithers on the ground can only dream of flying through the air.
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
pt a=1; b=0 \( f(1)\ge f(1)+f(0) => 0\ge f(0)
\)
pt a=1; b=-1 => \( f(0)\ge 1+f(-1) => f(0)\ge 0
\)
Din cele doua relatii rezulta f(0)=0
pt. a=1;b=1 => \( f(2)\ge 2 \)
pt. a=2; b=-1 => \( f(1)\ge f(2)+f(-1) => 2\ge f(2)
\)
La fel rezulta ca f(2)=2
\)
pt a=1; b=-1 => \( f(0)\ge 1+f(-1) => f(0)\ge 0
\)
Din cele doua relatii rezulta f(0)=0
pt. a=1;b=1 => \( f(2)\ge 2 \)
pt. a=2; b=-1 => \( f(1)\ge f(2)+f(-1) => 2\ge f(2)
\)
La fel rezulta ca f(2)=2
Last edited by DrAGos Calinescu on Sun Dec 07, 2008 10:58 pm, edited 1 time in total.
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
Pentru \( a=0 \) si \( b=1 \) avem
\( f(1)\geq f(0)+f(1) \) \( \to \) \( 0\geq f(0) \) (1)
Pentru \( a=1 \) si \( b=-1 \) avem
\( f(0)\geq f(1) + f(-1) \geq 1 + (-1)=0 \) (2)
Din relatiile (1) si (2) rezulta ca \( f(0)=0 \) si \( f(-1)=-1 \)
pentru \( a=2 \) si \( b=-1 \)
\( f(1)\geq f(2)+f(-1) \) \( \to \) \( 2\geq f(2) \) (3)
Pentru \( a=b=1 \)
\( f(2)\geq 2 \) (4)
Din relatiile (3) si (4) rezulta \( f(2)=2 \)
\( f(1)\geq f(0)+f(1) \) \( \to \) \( 0\geq f(0) \) (1)
Pentru \( a=1 \) si \( b=-1 \) avem
\( f(0)\geq f(1) + f(-1) \geq 1 + (-1)=0 \) (2)
Din relatiile (1) si (2) rezulta ca \( f(0)=0 \) si \( f(-1)=-1 \)
pentru \( a=2 \) si \( b=-1 \)
\( f(1)\geq f(2)+f(-1) \) \( \to \) \( 2\geq f(2) \) (3)
Pentru \( a=b=1 \)
\( f(2)\geq 2 \) (4)
Din relatiile (3) si (4) rezulta \( f(2)=2 \)