Ecuatie de gradul II cu radacini intregi

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Ecuatie de gradul II cu radacini intregi

Post by alex2008 »

Se da ecuatia \( x^2-mx+2m^2-m-1=0 \) . Sa se determine m real pentru care ecuatia are radacini intregi .
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Ecuatia se mai scrie:


\( 2m^2-m(x+1)+x^2-1=0 \)

adica \( \Delta_m=(x+1)^2-8(x^2-1)=(x+1)(9-7x)\ge 0 \)

Asadar \( x\in[-1,\frac{9}{7}]\cap\mathbb{Z}=\{-1,0,1} \)

Pentru x=-1 rezulta m=0.


x=0, rezulta m=1 sau \( -\frac{1}{2} \)

x=1 rezulta m=0 sau 1
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

La verificare pentru \( m=-\frac{1}{2} \) , x nu e intotdeauna intreg .
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Pentru \( m=-\frac{1}{2} \)

Ecuatia devine
\( x\left( x+\frac{1}{2}\right)=0 \)

si are o radacina intreaga \( x=0 \).


Sa se determine m real pentru care ecuatia are radacini intregi .
Se intelege sa aiba macar una, nu ambele.
Post Reply

Return to “Clasa a IX-a”