Problema cu multimi

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Problema cu multimi

Post by alex2008 »

Fie \( a_0 \) un numar natural . Definim multimea \( A=\{a_0,a_1,a_2, ... ,a_n, ... \} \) , unde \( a_1=\sqrt{a_0^2+1} \) , ... , \( a_{n+1}=\sqrt{a_n^2+1} \) , ...
Aratati ca \( A-\mathb{Q}\neq0 \) .
. A snake that slithers on the ground can only dream of flying through the air.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Acolo \( A-\mathb{Q} \) trebuie sa fie diferit de multimea vida . :)
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

\( a_1^2=a_0^2+1 \)
\( a_2^2=a_1^2+1 \)
....................
\( a_n^2=a_{n-1}^2+1 \)
_____________ \( \bigoplus \)

\( a_n^2=a_0^2+n \)

pt \( n=2a_0+1 \)
\( a_{2a_0+1}^2=(a_0+1)^2 \) \( \to \) \( a_{2a_0+1} \in \mathbb{Q} \)
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

cred ca trebuia sa demonstrezi ca are si elemente irationale, nu elemente rationale.
n-ar fi rau sa fie bine :)
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Ai dreptate, am citit eu gresit.

Daca \( a_0 \neq 0 \) \( \to \) \( a_0^2+1 \) este natural dar nu e patrat perfect, deci \( a_1 \in \mathbb{R}-\mathbb{Q} \)

Daca \( a_0=0 \) \( \to \) \( a_2=\sqrt{2} \in \mathbb{R}-\mathbb{Q} \)
Post Reply

Return to “Clasa a IX-a”