Calculati:
\( \lim_{n \to \infty}({1-\frac{1}{2}+\frac{1}{3} + \dots + \frac{(-1)^{n-1}}{n}}) \).
Limita unui sir
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
Notam \( E_n=\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k}-\ln n \). Se Stie ca \( \lim_{n\to\infty}E_n=c\in (0,1) \)(constanta lui Euler).
Pentru \( n=2k+1 \) :
\( S_{2k+1}=1-\frac{1}{2}+...+\frac{{(-1)}^{2k}}{2k+1}=1+\frac{1}{2}+...+\frac{1}{2k+1}-2(\frac{1}{2}({1+\frac{1}{2}+...+\frac{1}{k}) \)
\( \lim_{k\to \infty} S_k=\lim_{k\to \infty}[E_{2k+1}+\ln_{2k+1}-(E_k+\ln k)]=c-c+\lim_{k\to \infty}(\ln(2k+1)-\ln k)=\lim_{k\to \infty} (\ln(2k+1)-\ln k)=\lim_{k\to \infty}\ \ln\frac{2k+1}{k}=\ln2 \).
Pentru \( n=2k+2 \)
\( S_{2k+2}=S_{2k+1}-\frac{1}{2k+2} \)
\( \lim_{k\to\infty} S_{2k+2}=\lim_{k\to\infty}(S_{2k+1}-\frac{1}{2k+2})=\lim_{k\to\infty}S_{2k+1}=\ln 2 \).
Deoarece sirul \( S_n \) are subsirul imparelor si cel al parelor cu aceeasi limita rezulta ca \( \lim_{n\to\infty}S_n=\ln2 \).
Pentru \( n=2k+1 \) :
\( S_{2k+1}=1-\frac{1}{2}+...+\frac{{(-1)}^{2k}}{2k+1}=1+\frac{1}{2}+...+\frac{1}{2k+1}-2(\frac{1}{2}({1+\frac{1}{2}+...+\frac{1}{k}) \)
\( \lim_{k\to \infty} S_k=\lim_{k\to \infty}[E_{2k+1}+\ln_{2k+1}-(E_k+\ln k)]=c-c+\lim_{k\to \infty}(\ln(2k+1)-\ln k)=\lim_{k\to \infty} (\ln(2k+1)-\ln k)=\lim_{k\to \infty}\ \ln\frac{2k+1}{k}=\ln2 \).
Pentru \( n=2k+2 \)
\( S_{2k+2}=S_{2k+1}-\frac{1}{2k+2} \)
\( \lim_{k\to\infty} S_{2k+2}=\lim_{k\to\infty}(S_{2k+1}-\frac{1}{2k+2})=\lim_{k\to\infty}S_{2k+1}=\ln 2 \).
Deoarece sirul \( S_n \) are subsirul imparelor si cel al parelor cu aceeasi limita rezulta ca \( \lim_{n\to\infty}S_n=\ln2 \).
Last edited by Laurian Filip on Mon Dec 08, 2008 8:55 pm, edited 7 times in total.
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Eu ma chinuiam de zor sa demonstrez ultima limita. Intr-un final mi-a iesit... ca sa-mi dau seama ca limita e cunoscuta.Virgil Nicula wrote:Identitatea Catalan (se arata usor !) : \( \sum_{k=1}^{2n}\frac {(-1)^{k-1}}{k}=\sum_{k=1}^n\frac {1}{n+k}\ \rightarrow\ \ln 2 \) .
Totusi postez solutia ca poate mai sunt "necititi" ca si mine pe forum si le prinde bine.
\( \sum_{k=1}^n\frac {1}{n+k}\ \rightarrow\ \ln 2. \)
Solutie:
Fie \( S_n = \sum_{k=1}^n\frac {1}{n+k} \)
Avem ca \( \left(1+\frac{1}{n} \right)^ \nearrow e \) si \( \left(1+\frac{1}{n} \right)^{n+1} \searrow e \).
De aici vom scoate inegalitatea dubla:
\( \frac{1}{n+k} > \ln(n+k+1)-ln(n+k) > \frac{1}{n+k+1} \).
Daca insumam dupa \( k=\overline{1,n} \) membru cu membru obtinem:
\( S_n > \ln \left( \frac{2n+1}{n+1} \right) > S_n + \frac{1}{2n+1}-\frac{1}{n+1} \).
De aici, \( \ln \left( \frac{2n+1}{n+1} \right) + \frac{1}{n+1} - \frac{1}{2n+1} > S_n >\ln \left( \frac{2n+1}{n+1} \right) \).
Daca trecem la limita in inegalitatea de mai sus, gasim \( \lim_{n \to \infty}{S_n}= \ln 2. \)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Mai exista o demonstratie cu sume Rieman, insa in clasa a XII - a. Presupunem
ca se cunoaste Identitatea Catalan sau se arata usor : \( S_{2n}\equiv\sum_{k=1}^{2n}\frac {(-1)^{k-1}}{k}=\sum_{k=1}^n\frac {1}{n+k} \) .
Deci \( \lim_{n \to \infty}S_{2n}=\lim_{n\to\infty}\ \sum_{k=1}^n\frac {1}{n+k}=\lim_{n\to\infty}\ \frac 1n\cdot\sum_{k=1}^n\frac {1}{1+\frac kn}=\int_0^1\frac {1}{1+x}\ \mathrm{dx}=\ln 2 \) .
ca se cunoaste Identitatea Catalan sau se arata usor : \( S_{2n}\equiv\sum_{k=1}^{2n}\frac {(-1)^{k-1}}{k}=\sum_{k=1}^n\frac {1}{n+k} \) .
Deci \( \lim_{n \to \infty}S_{2n}=\lim_{n\to\infty}\ \sum_{k=1}^n\frac {1}{n+k}=\lim_{n\to\infty}\ \frac 1n\cdot\sum_{k=1}^n\frac {1}{1+\frac kn}=\int_0^1\frac {1}{1+x}\ \mathrm{dx}=\ln 2 \) .
Last edited by Virgil Nicula on Tue Dec 09, 2008 11:22 am, edited 7 times in total.
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
Cred ca asta am folosit euRadu Titiu wrote:Sau la nivel de clasa a XI-a se mai poate demonstra folosind faptul ca \( 1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n}-\ln n \) convergeVirgil Nicula wrote: Mai exista o demonstratie cu sume Rieman, insa in clasa a XII - a :.
Am notat cu c limita sirului.