Ecuatie logaritmica 1

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Ecuatie logaritmica 1

Post by mihai++ »

Rezolvati in \( \mathbb{R}_+^* \):
\( x^{\log_2{3}}+x^{\log_3{2}}=2x. \)
n-ar fi rau sa fie bine :)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Daca \( x\ge 1 \), atunci

\( 2x=x^{\log_2 3}+x^{\log_3 2}\ge2\sqrt{x^{\log_2 3+\log_3 2}}\ge2x^{\sqrt{\log_2 3\cdot \log_3 2}}=2x, \)

de unde

\( x^{\log_2 3}=x^{\log_3 2}, \)

deci \( x=1 \).
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Asta mi-am dat seama si eu... Dar ce se intampla cand \( x<1 \)?
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Ne gandim.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Eu am facut un grafic pe calculator (pt \( \sqrt{x}+x^2=2x \) am gasit o solutie intre 0.7 si 0.8 ) si cred ca ecuatia \( x^a+x^{\frac{1}{a}}=2x,\ a=\log_23 \), are o solutie subunitara care nu poate fi calculata.
n-ar fi rau sa fie bine :)
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Exista o solutie in (0,1), \( x=0,3742... \). Nu cred ca se poate calcula.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Clasa a X-a”