Sistem circular

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Sistem circular

Post by Marius Mainea »

Rezolvati in \( \mathbb{R} \) sistemul :

\( \left\{\begin{array}{rcl}\log_{12}{(x^2-x)}=\log_{4}{y}\\ \log_{12}{(y^2-y)}=\log_{4}{z}\\ \log_{12}{(z^2-z)}=\log_{4}{x}\end{array}\right. \)

Concursul ,,Nicolae Coculescu'' ,2008
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

din conditiile de existenta ale logaritmilor obtinem
\( x>0,\ x^2-x >0 \) adica \( x>1 \) si analoagele. Atunci functia \( g(x)=x^2-x \) este crescatoare. Logaritmii de puteri supraunitare sunt functii crescatoare, deci \( \log_{12}\circ g \) e functie crescatoare. La fel si \( \log_4 \).
Pentru \( x\geq y\geq z \) se aplica monotonia functiilor de mai sus si se obtine \( x=y=z \). Deci mai avem de rezolvat ecuatia
\( \log_{12}(x^2-x)=\log_4 x \). Echivalent \( \frac{\ln{x}+\ln(x-1)}{\ln 3 +\ln 4}=\frac{\ln x}{\ln 4} \Leftrightarrow \frac{\ln(x-1)}{\ln 3}=\frac{\ln x}{\ln 4} \). De aici se deduce usor ca \( x=4 \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Clasa a X-a”