Vectori

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Vectori

Post by alex2008 »

Fie A, B, C trei puncte distincte in plan . Sa se arate ca A, B, C coliniare \( \leftrightarrow \) Exista x, y, z cu \( x+y+z=o \) astfel incat pentru orice punct O apartine planului \( x\cdot\vec{OA}+y\cdot\vec{OB}+z\cdot\vec{OC}=\vec0 \) . Va rog faceti-o pe ambele parti .
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

"\( \Longrightarrow \)"

sunt coliniare, deci exista k real astfel incat
\( \frac{\vec{AB}}{\vec{BC}}=k \)

din proprietatile vectorilor rezulta
\( \vec{OB}=\frac{\vec{OA}+k\vec{OC}}{k+1} \)

\( x=-\frac{1}{k+1}, y=1, z=-\frac{k}{k+1} \) indeplinesc ambele conditii.


"\( \Longleftarrow \) "

\( \vec{OB}=\frac{z\vec{OC}+x\vec{OA}}{x+z} \)

deci A,B,C coliniare.
Marcelina Popa
Bernoulli
Posts: 208
Joined: Wed Mar 05, 2008 3:25 pm
Location: Tulcea
Contact:

Post by Marcelina Popa »

La reciproca se putea porni si asa: daca relatia are loc pentru orice punct O din plan, atunci ea are loc si pentru O=A.

A, sa nu uit: la reciproca trebuie precizat "exista x, y si z, nu toate nule, astfel incat ...".
User avatar
firebomb
Euclid
Posts: 12
Joined: Wed Nov 19, 2008 9:00 pm

Post by firebomb »

Deci nu inteleg la reciproca ... :( Se pleaca de la x=-1/1+k , y=1 , z=-k/k+1 si si foloseste relatia vectoriala OM=1/1+k ori OA +k/k+1 ori OB ; OM , OB , OA vectori sau cum ? ... nu inteleg . :(
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Da ... nici eu nu prea inteleg ... :)
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

la reciproca stim ca \( x+y+z=0 \) de unde \( y=-x-z \) si inlocuim y in \( x\cdot\vec{OA}+y\cdot\vec{OB}+z\cdot\vec{OC}=\vec0 \) si rezulta relatia de mai sus.
Post Reply

Return to “Clasa a IX-a”