Relatia lui Euler

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
moldo
Euclid
Posts: 27
Joined: Sun Sep 30, 2007 1:48 pm
Location: Tg Mures

Relatia lui Euler

Post by moldo »

\( ABCD \) patrulater convex,iar \( E,F \) mij. \( [AC] \) si \( [BD] \)
Sa se dem

\( AB^2+BC^2+CD^2+DA^2=AC^2+BD^2+4EF^2 \)

Demonstratia sa fie cu nr complexe. :D
Last edited by moldo on Sun Nov 23, 2008 4:55 pm, edited 1 time in total.
moldo
Euclid
Posts: 27
Joined: Sun Sep 30, 2007 1:48 pm
Location: Tg Mures

Post by moldo »

fara a folosi egalitatea \( |u|^2=u\overline{u} \) si sa se desfaca parantezele ..e prea mult de lucru :lol: :lol:
Marcelina Popa
Bernoulli
Posts: 208
Joined: Wed Mar 05, 2008 3:25 pm
Location: Tulcea
Contact:

Post by Marcelina Popa »

E si o demonstratie vectoriala destul de simpla (cu produs scalar).
moldo
Euclid
Posts: 27
Joined: Sun Sep 30, 2007 1:48 pm
Location: Tg Mures

Post by moldo »

vectoriala o stiu
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

moldo wrote: Fie \( ABCD \) un patrulater convex si \( E\ ,\ F \) mijloacele lui \( [AC] \) si \( [BD] \) . Sa se arate ca

\( AB^2+BC^2+CD^2+DA^2=AC^2+BD+4\cdot EF^2 \) (cu nr complexe !)
:D
De fapt relatia Euler este adevarata intr-un tetraedru \( ABCD \) ...

Daca notam mijloacele \( X \) , \( Y \) ale muchiilor \( AB \) , \( CD \) respectiv, atunci

exista relatia \( AB^2+CD^2+4\cdot XY^2=AC^2+AD^2+BC^2+BD^2 \) .

Caz particular. Daca \( D\in (ABC) \) (la limita !), atunci se obtin relatiile Euler intr-un

patrulater convex \( ABCD \). Notam mijloacele \( M \) , \( N \) , \( P \) , \( Q \) , \( E \) , \( F \) ale segmentelor

\( [AB] \) , \( [BC] \) , \( [CD] \) , \( [DA] \) , \( [AC] \) , \( [BD] \) respectiv. Exista relatiile de tip Euler :

\( \odot\ \ AC^2+BD^2+4\cdot EF^2=AB^2+AD^2+CB^2+CD^2 \) .

\( \odot\ \ AB^2+CD^2+4\cdot MP^2=AC^2+AD^2+BC^2+BD^2 \) .

\( \odot\ \ AD^2+BC^2+4\cdot NQ^2=AB^2+AC^2+DB^2+DC^2 \) .

Particularizati relatia Euler la un deltoid (o diagonala este axa de simetrie !), trapez sau paralelogram.

Observatie. In afara de solutia sintetica folosind doar teorema medianei, mie imi place si solutia

cu numere complexe
folosind doar \( \overline {\underline {\left\|\ |z|^2=z\cdot\overline z\ \right\|}} \) si \( \overline {\underline {\left\|\ A(a)\ ,\ B(b)\ \Longrightarrow\ AB^2=|a-b|^2\ \right\|}} \) .

Vezi
aici patru demonstratii a relatiei lui Euler intr-un patrulater.
Last edited by Virgil Nicula on Mon Nov 24, 2008 8:25 pm, edited 14 times in total.
moldo
Euclid
Posts: 27
Joined: Sun Sep 30, 2007 1:48 pm
Location: Tg Mures

Post by moldo »

ok,multumesc ,astept si dem care sa tina de nr complexe :D
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Sa presupunem ca trebuie sa dovedim ca "\( \left(\forall\right) x\in A \) este adevarata proprietatea \( p(x) \)". Se cauta \( B\subset A \) astfel incat este mai usor sa aratam ca "\( \left(\forall\right) x\in B \) este adevarata proprietatea \( p(x) \)". Si ramane de dovedit implicatia "\( \left(\forall\right) x\in B \) este adevarata proprietatea \( p(x) \) \( \Longrightarrow \) \( \left(\forall\right) x\in A \) este adevarata proprietatea \( p(x) \)".
Last edited by Virgil Nicula on Fri Jan 30, 2009 12:07 pm, edited 4 times in total.
moldo
Euclid
Posts: 27
Joined: Sun Sep 30, 2007 1:48 pm
Location: Tg Mures

Post by moldo »

frumos,multumesc domnule Virgil Nicula
Post Reply

Return to “Clasa a X-a”