Inegalitate in legatura cu conditia \sum a^2 = 4

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Inegalitate in legatura cu conditia \sum a^2 = 4

Post by Radu Titiu »

Daca \( a,b,c,d>0 \) si are loc relatia \( a^2+b^2+c^2+d^2=4 \), aratati ca \( a^3+b^3+c^3+d^3<8 \), iar 8 este cea mai buna constanta.
A mathematician is a machine for turning coffee into theorems.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Prima parte a inegalitatii o pot demonstra. Sa arat ca este cea mai buna constanta, ei bine, aici o sa ma gandesc ceva mai mult... :shock:
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Pai daca ai aratat aia restul e simplu.

Fie \( a=2-\frac{1}{n} \) si \( b=c=d=\sqrt{\frac{1}{3}(\frac{4}{n}-{\frac{1}{n^2})} \).

\( a^2+b^2+c^2+d^2=4 \)
iar
\( \lim_{n \to \infty}(a^3+b^3+c^3+d^3)=8 \).
Post Reply

Return to “Clasa a VIII-a”