Functie periodica

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Functie periodica

Post by alex2008 »

Se da functia \( f : \mathb{R} \rightarrow \mathb{R} \) astfel incat \( f(x)\le x \) , oricare x real si \( f(x+y)\le f(x)+f(y) \) . Sa se arate ca functia este periodica pe \( \mathb{R} \)
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

functia \( f:\mathbb{R} \to\mathbb{R} \) cu \( f(x)=x \) verifica ipoteza ta, dar nu este periodica.Ceva nu e bine in enuntul problemei tale
A mathematician is a machine for turning coffee into theorems.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Nu ... Cred ca e bine , asa am gasit-o . :)
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Da ... ma scuzati ... aveti dreptate :) De fapt se cere sa se cerceteze daca functia este periodica . :D
. A snake that slithers on the ground can only dream of flying through the air.
Post Reply

Return to “Clasa a IX-a”