Functie

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Functie

Post by alex2008 »

Sa se arate ca functia \( f : \mathb{R} -> \mathb{R} \) , \( f(x)=\frac{x+3}{x-2} \) nu este marginita .
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

fie t astfel incat \( x=2+t \)

\( f(x)=\frac{5+t}{t}=1+\frac{5}{t} \) care nu este marginit.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Putin mai explicit va rog ... nu stiu conditiile cand o functie este marginita sau nu :? :cry: :roll:
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

presupunem ca f(x) e marginita superior.
deci exista \( m\in \mathbb{R} \) astfel incat
\( f(x)< m \) , oricare ar fi x din domeniul de definitie al functiei

de unde rezulta ca
\( 1+\frac{5}{t} < m \)
\( \frac{5}{t}<m-1 \)
\( t>\frac{5}{m-1} \)

contradictie deoarece exista x real pentru care are t=x-2 este mai mic decat \( \frac{5}{m-1} \)
Post Reply

Return to “Clasa a IX-a”