Fie a,b,c>0. Sa se arate ca:
\( (a^2+b^2)(b^2+c^2)(c^2+a^2)\ge abc(a+b)(b+c)(c+a). \)
Virgil Nicula
Aplicatie-CBS
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Re: Aplicatie-CBS
Demonstratie (la nuvel de clasa a VII - a !) .\( \{a,b,c\}\subset\left(0,\infty\right)\ \Longrightarrow\ \left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge abc(a+b)(b+c)(c+a) \) .
\( \left\|\ \begin{array}{c}
a^4+b^2c^2\ge 2a^2bc\\\\
a^2\left(b^2+c^2\right)=a^2\left(b^2+c^2\right)\end{array}\ \right\|\ \bigoplus\ \Longrightarrow\ \left(a^2+b^2\right)\left(a^2+c^2\right)\ge a^2(b+c)^2 . \)
\( \left\|\ \begin{array}{c}
\left(a^2+b^2\right)\left(a^2+c^2\right)\ge a^2(b+c)^2\\\\
\left(b^2+c^2\right)\left(b^2+a^2\right)\ge b^2(c+a)^2\\\\
\left(c^2+a^2\right)\left(c^2+b^2\right)\ge c^2(a+b)^2\end{array}\ \right\|\ \bigodot\ \Longrightarrow\ \prod\left(b^2+c^2\right)\ge abc\prod (b+c) \) .
Observatie. Vezi si aici , unde intr-adevar avem nevoie de inegalitatea C.B.S. !
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
\( 2(a^2+b^2) \geq (a+b)^2 \)
\( 2(b^2+c^2) \geq (b+c)^2 \)
\( 2(c^2+a^2) \geq (c+a)^2 \)
\( a^2+b^2 \geq 2ab \)
\( b^2+c^2 \geq 2bc \)
\( c^2+a^2 \geq 2ca \)
prim inmultire
\( 8 ((a^2+b^2)(b^2+c^2)(c^2+a^2))^2 \geq 8 (abc(a+b)(b+c)(c+a))^2 \)
echivalent cu
\( (a^2+b^2)(b^2+c^2)(c^2+a^2) \geq abc(a+b)(b+c)(c+a) \)
\( 2(b^2+c^2) \geq (b+c)^2 \)
\( 2(c^2+a^2) \geq (c+a)^2 \)
\( a^2+b^2 \geq 2ab \)
\( b^2+c^2 \geq 2bc \)
\( c^2+a^2 \geq 2ca \)
prim inmultire
\( 8 ((a^2+b^2)(b^2+c^2)(c^2+a^2))^2 \geq 8 (abc(a+b)(b+c)(c+a))^2 \)
echivalent cu
\( (a^2+b^2)(b^2+c^2)(c^2+a^2) \geq abc(a+b)(b+c)(c+a) \)