Fie \( a \) un numar real.
Daca \( [n^2a] \) este patrat perfect pentru oricare numar natural \( n \), demonstrati ca \( a \) trebuie sa fie un numar natural patrat perfect!
Problema interesanta cu partea intreaga
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Se demonstreaza prin inductie dupa n propozitia;
P(n): \( \{a\}<\frac{1}{n^2} \); pentru orice \( n\ge 1 \)
P(n): \( \{a\}<\frac{1}{n^2} \); pentru orice \( n\ge 1 \)
Last edited by Marius Mainea on Fri Nov 14, 2008 4:38 pm, edited 1 time in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
esti sigur?ca nu prea iese...adica nu ma prind eu...trebuie sa fie o inductie mai diferita am impresia,adica "in sus si in jos"...
intamplator,am dat de ea pe mathlinks:
http://www.mathlinks.ro/viewtopic.php?t=173380
acolo are data o solutie de-a dreptul "infioratoare"
plus ca autorul solutiei da explicatii suplimentare de vreo 3-4 ori,si nici alea nu par complete ...In orice caz,solutia de acolo e super-artificiala,se bazeaza pe niste calcule urate,plus ca nu mi-ar fi venit in 100 de ani ideea sa fac ce face el acolo..
De aceea nu prea-mi vine a crede ca ar iesi asa simplu...
intamplator,am dat de ea pe mathlinks:
http://www.mathlinks.ro/viewtopic.php?t=173380
acolo are data o solutie de-a dreptul "infioratoare"
De aceea nu prea-mi vine a crede ca ar iesi asa simplu...
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
1) Verificare: n=1 P(1): \( \{a\}<1 \) evident.
n=2 P(2): \( \{a\}<\frac{1}{4} \) (exercitiu)
n=3 P(3): \( \{a\}<\frac{1}{9} \) (exercitiu)
2) Pasul de inductie: resupunem P(n) adevarat si demonstram P(n+1) adevarat.
Din ipoteza , pentru n=1 avem \( [a]=k^2 \) , patrat perfect.
Pentru n+1 in enunt avem \( [(n+1)^2a]=[(n+1)^2[a]+(n+1)^2\{a\}]\le (n+1)^2k^2+[(n+1)^2\cdot\frac{1}{n^2}]=(n+1)^2k^2+1 \) e patrat perfect rezulta ca \( [(n+1)^2a]=(n+1)^2[a] \) de unde \( [(n+1)^2\{a\}]=0 \) si de aici \( \{a\}<\frac{1}{(n+1)^2} \) , deci P(n+1) e adevarata.
n=2 P(2): \( \{a\}<\frac{1}{4} \) (exercitiu)
n=3 P(3): \( \{a\}<\frac{1}{9} \) (exercitiu)
2) Pasul de inductie: resupunem P(n) adevarat si demonstram P(n+1) adevarat.
Din ipoteza , pentru n=1 avem \( [a]=k^2 \) , patrat perfect.
Pentru n+1 in enunt avem \( [(n+1)^2a]=[(n+1)^2[a]+(n+1)^2\{a\}]\le (n+1)^2k^2+[(n+1)^2\cdot\frac{1}{n^2}]=(n+1)^2k^2+1 \) e patrat perfect rezulta ca \( [(n+1)^2a]=(n+1)^2[a] \) de unde \( [(n+1)^2\{a\}]=0 \) si de aici \( \{a\}<\frac{1}{(n+1)^2} \) , deci P(n+1) e adevarata.