Cristian Calude, proba pe echipe, R.I, P.I
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
Cristian Calude, proba pe echipe, R.I, P.I
Sa se calculeze suma numerelor naturale impare cuprinse intre \( n^2-5n+6 \) si \( n^2+n \),\( n\in \mathbb{N} \), \( n\geq 4 \)
\( n^2-5n+6=(n-2)(n-3) \) => este numar par (produs de numere consecutive). La fel \( n^2+n \). Rezulta ca suma ceruta este
\( S=(n^2-5n+7)+(n^2-5n+9)+.......+(n^2+n-1) \)
Este o progresie aritmetica de ratie 2. Notam k numarul de termeni.
\( a_1=n^2-5n+7 \)
\( a_k=n^2+n-1 \)
Cum \( a_k=a_1+(k-1)r => k=3n-3 \)
\(
S=S_k=\frac{k(a_1+a_k)}{2}=3(n-1)(n^2-2n+3) \)
\( S=(n^2-5n+7)+(n^2-5n+9)+.......+(n^2+n-1) \)
Este o progresie aritmetica de ratie 2. Notam k numarul de termeni.
\( a_1=n^2-5n+7 \)
\( a_k=n^2+n-1 \)
Cum \( a_k=a_1+(k-1)r => k=3n-3 \)
\(
S=S_k=\frac{k(a_1+a_k)}{2}=3(n-1)(n^2-2n+3) \)