O inegalite de cls a sasea

Moderators: Bogdan Posa, Laurian Filip

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

O inegalite de cls a sasea

Post by alex2008 »

Demonstrati ca : \( \frac{25}{2\cdot7}+\frac{25}{7\cdot12}+\frac{25}{12\cdot17}+...+\frac{25}{47\cdot52}<\frac{5}{2} \)
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Pentru inceput: \( \frac{1}{k(k+5)}=\frac{1}{5}(\frac{1}{k}-\frac{1}{k+5}) \), deci \( \frac{1}{2 \cdot 7}+\frac{1}{7 \cdot 12}+...+\frac{1}{47 \cdot 52}=\frac{1}{5}(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{47}-\frac{1}{52})=\frac{1}{5}(\frac{1}{2}-\frac{1}{52})=\frac{1}{5} \cdot \frac{25}{52}=\frac{5}{52} \).
Rezulta ca \( LHS=25(\frac{1}{2 \cdot 7}+\frac{1}{7 \cdot 12}+...+\frac{1}{47 \cdot 52}=25 \cdot \frac{5}{52}=\frac{125}{52}<\frac{2}{5}(\Longleftrightarrow 250<260). \)
Observatie. \( \text{LHS}=\text{Left Hand Side}=\text{Membrul Stang} \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

aceeasi solutie am dat si eu
n-ar fi rau sa fie bine :)
Post Reply

Return to “Clasa a VI-a”