Inegalitate conditionata cu x+y+z=1

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate conditionata cu x+y+z=1

Post by Claudiu Mindrila »

Daca \( x,y,z\in\mathbb{R}^*_+ \) astfel incat \( x+y+z=1 \), atunci \( \sqrt{\frac{x+yz}{yz}}+\sqrt{\frac{y+xz}{xz}}+\sqrt{\frac{z+xy}{xy}} \geq 6
\)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( \sqrt{\frac{x+yz}{yz}}=\sqrt{\frac{x(x+y+z)}{yz}}=\sqrt{\frac{(x+y)(x+z)}{yz}}\ge\sqrt{\frac{2\sqrt{xy}\cdot2\sqrt{xz}}{yz}}=2\sqrt{\frac{x}{\sqrt{yz}}} \)
apoi se aplica inegalitatea mediilor pentru 3 numere.
Post Reply

Return to “Clasa a VIII-a”