Fie triunghiul \( ABC \), \( M \in (BC) \), \( N \in (AB) \), \( P \in (AC) \) cu \( \frac{NB}{NA}=\frac{1}{2} \), \( \frac{PC}{
PA}=\frac{1}{3} \) , \( \frac{BM}{MC}=\frac{2}{3} \). iar \( U \in AM \cap NP \). Sa se calculeze raportul \( \frac{AU}{UM} \).
Cristian Calude, proba pe echipe, R.I, P.II
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Vom folosi relatia de AICI , cunosuta si ca Teorema Transversalei.
Scriind aceasta teorema in triunghiul \( ABC \) din problema, avem:
\( \frac{BN}{NA} \cdot MC+ \frac{PC}{PA} \cdot BM= \frac{UM}{UA} \cdot(BM+MC) \), sau \( \frac{MC}{2}+\frac{MB}{3}=\frac{UM}{UA}\cdot(BM+MC).(1) \).
Insa \( \frac{BM}{MC}=\frac{2}{3}\Longrightarrow BM=2p, MC=3p, p\in \mathbb{R}^*_+. \)
Relatia \( (1) \) devine \( 2p=\frac{UM}{UA} \cdot 5p \Longleftrightarrow \frac{AU}{UM}=\frac{2}{5}. \)
Scriind aceasta teorema in triunghiul \( ABC \) din problema, avem:
\( \frac{BN}{NA} \cdot MC+ \frac{PC}{PA} \cdot BM= \frac{UM}{UA} \cdot(BM+MC) \), sau \( \frac{MC}{2}+\frac{MB}{3}=\frac{UM}{UA}\cdot(BM+MC).(1) \).
Insa \( \frac{BM}{MC}=\frac{2}{3}\Longrightarrow BM=2p, MC=3p, p\in \mathbb{R}^*_+. \)
Relatia \( (1) \) devine \( 2p=\frac{UM}{UA} \cdot 5p \Longleftrightarrow \frac{AU}{UM}=\frac{2}{5}. \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact: