Permutari fara puncte fixe

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Permutari fara puncte fixe

Post by Beniamin Bogosel »

Gasiti numarul permutarilor de ordinul \( n \) care nu au puncte fixe.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
mumble
Euclid
Posts: 48
Joined: Wed Jan 30, 2008 10:25 pm

Post by mumble »

Problema tipica de numarare.
Sa numaram toate permutarile care au cel putin un punct fix. Notand \( A_i \) multimea permutarilor pentru care \( i \) e punct fix, ne intereseaza \( |A_1\cup A_2\cup\dots\cup A_n|=\sum_i|A_i|-\sum_{i<j}|A_i\cap A_j|-\sum_{i<j<k}|A_i\cap A_j \cap A_k|+\dots=C_n^1(n-1)!-C_n^2(n-2)!+\dots \) (am folosit PIE).
Scazand acest numar din numarul total de permutari \( n! \) gasim in final
\( \sum_{k=0}^{n}(-1)^k C_n^k(n-k)! \)
permutari fara puncte fixe.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Daca mai si simplifici factorialul de la numitorii combinarilor obtii
\( \sum_{k=0}^n \frac{n!}{k!}(-1)^k \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Combinatorica”