Spatiu cu masura

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Spatiu cu masura

Post by Beniamin Bogosel »

Fie \( (X,\mathcal{A},\mu) \) un spatiu cu masura cu proprietatea ca pentru orice \( A\in \mathcal{A} \) cu \( \mu(A)=\infty \) exista \( B\in \mathcal{A},\ B\subset A \) cu \( 0<\mu(B)<\infty \). Demonstrati atunci ca pentru orice \( A\in \mathcal{A} \) cu \( \mu(A)=\infty \) exista \( C \in \mathcal{A},\ C\subset A \) cu \( \mu(C)=\infty \) si exista \( (B_n) \) un sir de multimi din \( \mathcal{A},\ B_n\subset A \) si \( \mu(B_n)<\infty \) oricare ar fi \( n \) si \( \bigcup_n^\infty B_n=C \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Teoria masurii”