Teorema lui Helly

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Teorema lui Helly

Post by Claudiu Mindrila »

Fie intervalele \( I_1=(a_1,b_1), I_2=(a_2,b_2),...,I_n=(a_n,b_n). \) Demonstrati ca daca doua din intervalele date au un punct comun, atunci toate cele \( n \) intervale au un punct comun.
Remarca. Problema de mai sus se mai numeste si teorema lui Helly
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

daca oricare doua au un punct comun.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

se intelege ca oricare doua...
User avatar
abc
Euclid
Posts: 11
Joined: Thu Oct 16, 2008 11:26 am

Post by abc »

Cu inductie. Daca luam n+1 intervale, teorema se aplica pent primele n intervale, care vor avea un element comun, de fapt chiar un interval mic comun. \( I_{n+1} \) are elemente comune cu fiecare din primele n intervale, deci \( a_{n+1}<b_k \) si \( b_{n+1}>a_k \) pentru orice k de la 1 la n.

Mai trebuie scrise niste chestii, dar nu mai am timp.
Post Reply

Return to “Clasa a VIII-a”