Fie \( a,b,c \) numere reale strict pozitive cu suma \( 1 \). Sa se arate ca \( \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq 3(a^2+b^2+c^2). \)
Mircea Lascu, TST OBMJ, 2006
TST ineq
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
TST ineq
Last edited by Claudiu Mindrila on Thu Oct 16, 2008 9:05 pm, edited 1 time in total.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
\( b \)-ul din mijloc nu e la patrat?
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Re: TST ineq
Vezi aiciClaudiu Mindrila wrote:Fie \( a,b,c \) numere reale strict pozitive cu suma \( 1 \). Sa se arate ca \( \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq 3(a^2+b^2+c^2). \)
Mircea Lascu, TST OBMJ, 2006