nu exista functii reale cu |f(x)-f(y)|>1 pt. orice x, y

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

nu exista functii reale cu |f(x)-f(y)|>1 pt. orice x, y

Post by Cezar Lupu »

Sa se arate ca nu exista functii \( f:\mathbb{R}\to\mathbb{R} \) cu proprietatea ca \( |f(x)-f(y)|>1, \forall x, y\in\mathbb{R} \) cu \( x\neq y \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Post by Alin Galatan »

Evident, f e injectiva, deci imaginea e de puterea continuului. Fiecarui punct \( (x,f(x)) \) ii asociez un disc deschis de raza \( \frac{1}{2} \). Din ipoteza rezulta ca nu exista doua puncte in acelasi disc, deci imaginea e echipotenta cu numarul discurilor, care e evident numarabil. Absurd.
pevcipierdut
Arhimede
Posts: 9
Joined: Tue Oct 02, 2007 11:12 pm

Post by pevcipierdut »

Problema asta a fost data la gazeta in 2005 cu diferenta ca in loc de 1 era |x-y| si ideea de rezolvare e aceeasi (cred).
Post Reply

Return to “Analiza matematica”