m, n, p numere reale pozitive, atunci exista bisectoare

Moderators: Mihai Fulger, Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

m, n, p numere reale pozitive, atunci exista bisectoare

Post by Cezar Lupu »

O problema absolut superba. Ea a constituit subiectul unei note publicate de Petru Mironescu si Laurentiu Panaitopol in American Mathematical Monthly in 1994. Ea suna cam asa:

Fie \( m, n, p \) numere reale strict pozitive. Sa se arate ca exista un unic triunghi, modulo o izometrie, astfel incat \( m, n, p \) sa reprezinte lungimile bisectoarelor triunghiului dat.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Are solutie care foloseste topologie problema asta?

Daca da, se poate posta de catre cunoscatori, ca a trecut aproape jumate de an de cand a fost pusa aici.

Multumesc... (sunt doar curios :))
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Post by bae »

***
Last edited by bae on Sat Feb 13, 2010 2:12 pm, edited 1 time in total.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Are cineva un link la rezolvare sau un pdf? Sau o poate posta cineva ca sunt curios. :)
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Topologie generala”