O problema absolut superba. Ea a constituit subiectul unei note publicate de Petru Mironescu si Laurentiu Panaitopol in American Mathematical Monthly in 1994. Ea suna cam asa:
Fie \( m, n, p \) numere reale strict pozitive. Sa se arate ca exista un unic triunghi, modulo o izometrie, astfel incat \( m, n, p \) sa reprezinte lungimile bisectoarelor triunghiului dat.
m, n, p numere reale pozitive, atunci exista bisectoare
Moderators: Mihai Fulger, Liviu Paunescu
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
m, n, p numere reale pozitive, atunci exista bisectoare
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Are cineva un link la rezolvare sau un pdf? Sau o poate posta cineva ca sunt curios. 
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog