Concursul "Al. Myller" problema 1

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Bogdan Cebere
Thales
Posts: 145
Joined: Sun Nov 04, 2007 1:04 pm

Concursul "Al. Myller" problema 1

Post by Bogdan Cebere »

Numerele reale distincte \( x,y,z \) au proprietatea că \( x^3-x=y^3-y=z^3-z \). Să se arate că \( x+y+z= 0 \).
Ahiles
Euclid
Posts: 28
Joined: Thu Apr 17, 2008 4:26 pm

Post by Ahiles »

Avem \( (x-1)x(x+1)=(y-1)y(y+1)=(z-1)z(z+1) \).
1) \( x,y,z \in (-\infty;-1)\cup (1;+\infty) \). Avem \( x(x+1)(x-1)\not=0 \). Analog pentru \( y,z \) .
Fiindca \( x\not=y\not=z \) avem \( x(x+1)(x-1)\not=y(y+1)(y-1)\not=z(z+1)(z-1) \), contradictie.
2) \( x,y,z\in\{-1;0;1\} \). Atunci avem \( x(x+1)(x-1)=y(y+1)(y-1)=z(z+1)(z-1)=0 \). Fiindca \( x,y,z \) sunt distincte, avem \( (x,y,z)\in\{(0;1;-1);(0;-1;1);(-1;1;0);(-1;0;1);(0;-1;1);(0;1;-1)\} \). In fiecare caz avem \( x+y+z=0 \), c.c.t.d.
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

\( x^3-x=y^3-y \Rightarrow (x-y)(x^2+xy+y^2)=x-y \)
Cum \( x,y, z \) sunt distincte, avem:
\( x^2+xy+y^2=y^2+yz+z^2=z^2+zx+x^2=1 \Rightarrow x^2+xy=z^2+yz \Rightarrow \)
\( \Rightarrow (x-z)(x+z)=(-y)(x-z) \Rightarrow x+z=-y \Rightarrow x+y+z=0 \).
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Omer Cerrahoglu
Euclid
Posts: 34
Joined: Mon Mar 17, 2008 1:08 pm

Post by Omer Cerrahoglu »

Fie \( x^3-x=y^3-y=z^3-z=k \). Consideram polinomul \( P(a)=a^3-a-k \). Evident \( x \), \( y \), \( z \) sunt cele 3 radacini ale polinomului. Folosind relatiile lui Viete pentru polinomul de grad 3 avem ca \( x+y+z=0 \)
Post Reply

Return to “Clasa a VII-a”