Problema cu inegalitate integrala

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Problema cu inegalitate integrala

Post by Beniamin Bogosel »

Fie \( f:[0,1]\to \mathbb{R} \) o functie continua astfel incat pentru orice \( x \in [0,1] \) avem
\( \int_x^1f(t){\rm d}t\geq \frac{1-x^2}{2} \).
Demonstrati ca \( \int_0^1f^2(t){\rm d}t\geq \frac{1}{3} \).

IMC 1995
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
bogdanl_yex
Pitagora
Posts: 91
Joined: Thu Jan 31, 2008 9:58 pm
Location: Bucuresti

Post by bogdanl_yex »

Notam \( F(x)=\int_x^1f(t){\rm d}t \).Avem ca \( \int_x^1f(t){\rm d}t\geq \frac{1-x^2}{2} \Rightarrow \int_{0}^{1}(F(1)-F(x))dx\geq \int_{0}^{1}\frac{1-x^{2}}{2}dx \Rightarrow F(1)-\int_{0}^{1}(x^{\prime}F(x))dx\geq \frac{1}{3} \Rightarrow \int_{0}^{1}xf(x)dx \geq \frac{1}{3} \)
Din inegalitatea CBS avem :\( \int_{0}^{1}f^{2}(x)dx\int_{0}^{1}x^{2}dx\geq (\int_{0}^{1}xf(x)dx)^{2}\geq \frac{1}{9} \), de unde rezulta concluzia.
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
Post Reply

Return to “Analiza matematica”