Inegalitate "nice"

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate "nice"

Post by Claudiu Mindrila »

Fie \( a,b,c \in \mathbb{R}^*_+ \). Demonstrati inegalitatea:
\( \frac{\sqrt{a}}{(a+b)(a+c)}+\frac{\sqrt{b}}{(b+a)(b+c)}+\frac{\sqrt{c}}{(c+a)(c+b} \leq \frac{3}{4\sqrt{abc}} \).
Last edited by Claudiu Mindrila on Wed Aug 06, 2008 9:22 pm, edited 1 time in total.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: Inegalitate "nice"

Post by Marius Mainea »

Claudiu Mindrila wrote:Fie \( a,b,c \in \mathbb{R}^*_+ \). Demonstrati inegalitatea:
\( \frac{\sqrt{a}}{(a+b)(a+c)}+\frac{\sqrt{b}}{(b+a)(b+c)}+\frac{\sqrt{c}}{(c+a)(c+b} \geq \frac{3}{4\sqrt{abc}} \).
Poate \( \frac{\sqrt{a}}{(a+b)(a+c)}+\frac{\sqrt{b}}{(b+a)(b+c)}+\frac{\sqrt{c}}{(c+a)(c+b} \leq \frac{3}{4\sqrt{abc}} \) :roll:
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Aveti dreptate. Am modificat.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

\( \sum_{} {\frac {\sqrt {a}}{(a+b)(a+c)} \) \( \leq \) \( \sum_{} {\frac {\sqrt {a}}{4 \sqrt {a^2bc}} \) \( = \) \( \frac {3}{4 \sqrt {abc}} \)
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Asta a fost si solutia mea Marius. Insa daca vrei o inegalitate draguta, incearca aici .
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a VII-a”