Fie \( a,b,c \in \mathbb{R}^*_+ \). Demonstrati inegalitatea:
\( \frac{\sqrt{a}}{(a+b)(a+c)}+\frac{\sqrt{b}}{(b+a)(b+c)}+\frac{\sqrt{c}}{(c+a)(c+b} \leq \frac{3}{4\sqrt{abc}} \).
Inegalitate "nice"
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate "nice"
Last edited by Claudiu Mindrila on Wed Aug 06, 2008 9:22 pm, edited 1 time in total.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Re: Inegalitate "nice"
Poate \( \frac{\sqrt{a}}{(a+b)(a+c)}+\frac{\sqrt{b}}{(b+a)(b+c)}+\frac{\sqrt{c}}{(c+a)(c+b} \leq \frac{3}{4\sqrt{abc}} \)Claudiu Mindrila wrote:Fie \( a,b,c \in \mathbb{R}^*_+ \). Demonstrati inegalitatea:
\( \frac{\sqrt{a}}{(a+b)(a+c)}+\frac{\sqrt{b}}{(b+a)(b+c)}+\frac{\sqrt{c}}{(c+a)(c+b} \geq \frac{3}{4\sqrt{abc}} \).
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Asta a fost si solutia mea Marius. Insa daca vrei o inegalitate draguta, incearca aici .
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste